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Studies of multiple bonds in discrete complexes provide 
fundamental insight into the nature of metal-metal bonds. 
However, few compounds containing heterometallic multiple 
bonds have been reported,1-2 and no general synthetic method has 
been developed for the synthesis and isolation of heterometallic 
multiply bonded compounds. Here, we report a simple, general 
procedure for the synthesis and isolation of unprecedented 
heterometallic and heteroporphyrin multiply bonded dimers. 

Transition-metal porphyrin dimers constitute a unique series 
for the systematic study of metal-metal bonds. A comprehensive 
set of homometallic metal-metal multiply bonded OEP and TTP3 

dimers has been prepared and characterized for 4d and 5d 
transition metals.4 Herein, the OETAP ligand5 was employed 
because it is a good structural analogue of OEP but also because 
it confers significantly different redox properties upon the metal 
center. Experimentally verifiable predictions of the bond order 
and spin states for these dimers can be made on the basis of a 
simple molecular orbital diagram.6 This model assumes that 
only d electrons are involved in bonding. In the case of Ru and 
Os in the II+ oxidation state, 12 d electrons are involved in the 
metal-metal bond; the molecular orbital diagram predicts a 
ground-state configuration of <r21r4 '̂nb41 '̂,,2, with a spin quantum 
number 1 and a bond order 2.2'6 Ru and Os have the same Pauling 
electronegativity (2.2)7 and hence are expected to form primarily 
covalent bonds. Thus the heteroporphyrin and heterometallic 
dimers should exhibit properties qualitatively similar to those of 
the homodimers. 

The new dimer precursors, Ru(OETAP) (py)2 and Os(OET-
AP)(py)2, were prepared in a manner similar to that reported for 
the OEP analogues.4'8-9 The dimers, [Ru(OETAP)]2 and [Os-
(OETAP)]2, were prepared by vacuum pyrolyses of axially ligated 
monomers.4-10 These dimers exhibit 1H NMR spectra similar to 
those of the corresponding OEP dimers,4 in that they display 
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narrow-line, paramagnetically shifted resonances (Table I).11 This 
is consistent with the prediction that these dimers should have 
a spin quantum number of 1 in their ground states. For the Ru 
and Os dimers, interconversion of the monocation and the neutral 
species changes the number of d electrons in the metal-metal 
bond. The E0 for this process is affected not only by the metal 
(e.g., [Os(OEP)]2 is easier to oxidize than [Ru(OEP)I2 by 0.4 
V), but also by the nature of the ligand (e.g., [Ru(OEP)]2 is 
easier to oxidize than [Ru(OETAP)I2 by 0.4 V).10-12'13 

The difference in metal-centered redox potentials between 
OETAP and OEP dimers can be exploited to prepare a ruthenium 
heteroporphyrin dimer. The heteroporphyrin dimer [(OEP)-
RuRu(OETAP)] is synthesized by pyrolyzing a mixture of the 
two ruthenium monomers, Ru(OEP)(py)2and Ru(OET AP)(py)2, 
resulting in a nonstatistical distribution of [Ru(OEP)]2 (16%), 
[Ru(OETAP)]2 (16%),and [ (OEP)RURU(OETAP)] (68%).10'14 

The heterodimer cation [ (OEP)RURU(OETAP)] [BF4] is then 
isolated by a series of redox titrations,15 made possible by the 
different redox potentials which the two ligands confer upon the 
metal centers (Figure I).10'16 The isolated heterodimer cation is 
reduced to yield the neutral heteroporphyrin dimer [(OEP)Ru-
Ru(OETAP)].10'17 The reduction potential of [(OEP)RuRu-
(OETAP)]+/0 (-0.50 V) is the average of those of the constituent 
homodimers [Ru(OEP)]2

+/° (-0.73 V) and [Ru(OETAP)]2
+/° 

(-0.30 V).10'12'13 In addition, [ (OEP)RURU(OETAP)] exhibits 
a 1H NMR spectrum which, like those of the corresponding 
homoporphyrin dimers, contains narrow-line, paramagnetically 
shifted resonances (Table I).4'11'17 

Furthermore, this general synthetic scheme of copyrolysis 
followed by redox titrations has been used to prepare hetero­
metallic heteroporphyrin dimers, such as [(OEP)OsRu(OET-
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 1HNMR(PPm1CD2Cl2): porphyrinic resonances, -CH1-
CH3 12.24 (br, 8H), 10.81 (m, 8H), 7.30 (m, 8H), 6.08 (m, 8H); -CH2CW3 
2.52 (t, 24H), 2.16 (br, 24H); ffmM0 13.53 (s, 4H). Mass spectrum (Ru'02) 
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(H)Cp2 were removed by heating under vacuum to give [(OEP)RuRu-
(OETAP)]. 1HNMR(PPm1C6D6): porphyrinic resonances,-CZf2CH3 34.66 
(m, 8H), 24.80 (m, 8H), 18.26 (m, 8H), 10.98 (m, 8H); -CH2CW3 3.75 (t, 
24H), 3.39 (t, 24H); Hn^, 12.73 (s, 4H). 

(18) Research in progress. 

0002-7863/93/1515-9309$04.00/0 © 1993 Amer ican Chemical Society 



9310 J. Am. Chem. Soc, Vol. 115, No. 20, 1993 Communications to the Editor 

Table I. 1H NMR (300 or 400 MHz) Resonances of OEP and OETAP Dimers at 25 0 C under Nitrogen Atmosphere 

CZZ2CH3 CH2CH3 Hm 

[Ru(OETAP)J2 in C6D6 

[Ru(OEP)]:4 in C6D6 

[Os(OETAP)J2 in C6D6 

[Os(OEP)]2
4binC6D6 

[ ( O E P ) R U R U ( O E T A P ) ] [ B F 4 ] in CD2Cl2 

[ ( O E P ) R U R U ( O E T A P ) ] in C6D6 

[ ( O E P ) O S R U ( O E T A P ) ] [ B F 4 ] in CD2Cl2 

[ ( O E P ) O S R U ( O E T A P ) ] in C6D6 

30.29 (m, 8H) 
15.69 (m, 8H) 
25.98 (m, 8H) 
11.10 (m, 8H) 
3.49 (m, 8H) 
2.65 (m, 8H) 
11.50 (m, 8H) 
7.77 (m, 8H) 
12.24 (br, 8H) 
10.81 (m, 8H) 
7.30 (m, 8H) 
6.08 (m, 8H) 
34.66 (m, 8H) 
24.80 (m, 8H) 
18.26 (m, 8H) 
10.98 (m, 8H) 
8.27 (br, 8H) 
7.77 (br, 8H) 
5.89 (br, 8H) 
5.67 (br, 8H) 
14.32 (m, 8H) 

13.70 (m, 8H) 
9.37 (m, 8H) 
8.53 (m, 8H) 

3.44 (t, 24H) 

3.42 (t, 24H) 

0.95 (t, 24H) 

1.92 (t, 24H) 

2.52 (t, 24H) 
2.16 (br, 24H) 

3.75 (t, 24H) 
3.39 (t, 24H) 

2.23 (br, 24H) 
1.89 (br, 24H) 

2.59 (t, 24H) 
2.20 (t, 24H) 

10.12 (s, 4H) 

-1.02 (s, 4H) 

13.53 (s, 4H) 

12.73 (s, 4H) 

11.32(br,4H) 

6.68 (s, 4H) 
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Figure 1. Synthesis and isolation of heteroporphyrin and heterometallic 
porphyrin and tetraazaporphyrin dimers. 

AP)].10 The reduction potential of [ ( O E P ) O S R U ( O E T A P ) ] + / 0 

(-0.73 V) is the average of the potentials of the constituent 
homodimers [Os(OEP)]2

+/° (-1.15 V) and [Ru(OETAP)]2
+/° 

(-0.30 V).12'13 The neutral heterometallic dimer exhibits narrow-
line, paramagnetically shifted resonances in the 1H NMR 
spectrum, similar to those of the homodimers (see Table I).4'10'1' 
These data are consistent with the assertion that the two 
heterodimers, [ ( O E P ) R U R U ( O E T A P ) ] and [(OEP)OsRu(O-
ETAP)], have the same ground-state electronic configurations 
as the homodimers (o-2ir45nb4ir*2) and can be included in a 
systematic study of metal-metal bonding. 

In summary, we report not only a new class of metal-metal-
bonded compounds, tetraazaporphyrin dimers, but also a general 

procedure for the preparation of both heteroporphyrin and 
heterometallic metal-metal-bonded dimers. We have illustrated 
these syntheses with examples using Ru and Os. According to 
the molecular orbital diagram, these dimers should all have bond 
order 2 and spin state 1. The data obtained thus far are consistent 
with both of these predictions. The Ru and Os heteroporphyrin 
and heterometallic dimers appear to be qualitatively similar to 
the corresponding homodimers. We are currently probing the 
nature of the metal-metal bond in these compounds through their 
crystallographic, vibrational, and magnetic properties. In ad­
dition, the application of this general synthetic methodology to 
the synthesis of unprecedented intertriad heterometallic multiply 
bonded dimers is the subject of forthcoming publications.18 
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